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Abstract

This paper looks at methods for predicting how likely it is that ann-version software system will
suffer from common-mode failures. Common-mode failures are frequently caused by specification
errors, specification ambiguities, and programmer faults. Since common-mode failures are detri-
mental ton-version systems, we have developed a method and a tool that observes the impact of
simulated specification errors and specification ambiguities. These observations are made possible
by a new family of fault injection algorithms designed to simulate specification anomalies. As
a side-benefit, this analysis also provides clues concerning which portions of the specification, if
even slightly wrong or misinterpreted, will lead to identical failures by two or more versions. This
suggests which specification directives have the most impact on the system’s functionality.
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1 Introduction

Software systems suffer from a variety of problems: incorrect requirements and specifications,
programmer faults, and faulty input data. These problems can cause software to exhibit undesirable
behavior, including crashing, hanging, or simply just producing wrong output.

At best, software testingreduces programming faults, but software testing can do little for
specification errors or corrupt input data anomalies.Formal methodsare geared toward thwarting
large classes of inconsistencies and ambiguities in specifications and can even detect programmer
faults. But even formal methods can be misapplied or fail to detect specification errors.

Here, we will provide a set of algorithms that are similar to traditional software testing ap-
proaches, but instead of testing the software, they test the resilience of the software to specification
errors. New software fault injection algorithms will be introduced here. These algorithms provide
insight into how a system will behave if the specification is erroneous.

Previously, we have published results from using fault injection in applications that did not
employ design diversity [9]. In this paper, we are focusing on ways for predicting whether the
identical failure by two or more parallel versions is possible if the versions’ faults can be traced back
to a common specification error or specification ambiguity. More specifically, we are interested in
how identical failures bydiverseversions affects ann-version system. (We have also done similar
work that deals exclusively with using fault injection to simulate random anomalies in diverse
versions [10], but that is not our focus here.)

In our approach, each version is forced to experience an incorrect internal computation that
can be mapped back to a common specification error. By showing that common-mode failures
are infrequent after the specification is forcefully mutated in a manner that simulates specification
errors and ambiguities, we can plausibly argue for placing diverse software versions in parallel
(with the use of a voter).

In n-version programming, different software versions, written to the same specification but
developed independently, execute in parallel (See Figure 1). It is imperative that there isno
communication between the teams responsible for developing the different versions. Quarantining
the different teams is essential such that misunderstandings from one team do not affect the
understanding of other teams. But quarantining teams is not always enough–uncorrelated faults in
distinct versions can lead to identical failures.

Although design diversity thwarts certain types of faults, it does not thwart all faults [6, 2].
Knight and Leveson [6] demonstrated that different programmers can make the same logical error.
An additional result from Knight and Leveson demonstrated cases where different logical errors
yielded common-mode failures in completely distinct algorithms and in different parts of similar
algorithms.

For this paper, we need to differentiate three different types of failures: (1) failures of versions
that satisfy the definition for common-mode failure, (2) non-common–mode version failures, and
(3) voter failures.Common-mode failureoccurs when two or more identical software versions are
affected by faults in exactly the same way [4]. More specifically, common-mode failures are said
to occur when there exists at least one input combination for which the outputs of two or more
versions are erroneous, and all outputs are identical for all possible inputs for this combination of
versions. Thus, if two or more versions respond to all inputs in the same way, and there is at least
one input that causes this set of versions to fail, then common-mode failure has occurred.Non-
common–mode failuresare simply version failures that cannot be correlated with other versions



and thus do not satisfy the definition of common-mode failure.Voter failuresoccur when the voter
makes a wrong decision because of the inputs it received.1

It is reasonable to further classify the severity of common-mode failures, since certain classes
of common-mode failures are more likely to trip up the voter than others. Here,severityis equal to
the number of versions that are in agreement on the “wrong output.” For example, a common-mode
failure between two versions is less likely to result in voter failure for a 9-version system than for
a 3-version system. This explains why specification ambiguities that affect only a handful of the
versions can be benign if the system is sufficiently large (in terms of the number of versions).

Many people have written offn-version programming as a dead approach to attaining high
integrity software because of then-version problem. But to our amazement,n-version programming
is alive and well in several different safety-critical domains, and it is particularly popular outside
of the United States. For example, Airbus uses diverse software versions for the A320/A330/A340
electrical flight controls systems [7, 1]. (Butn-version programming cannot fix everything—the
n-version Airbus flight control system still has a fatal flaw that has not been fixed or thwarted by
any of then-version capabilities [5].)

In the United States, the FAA’s position, based on industry’s feedback, is that since the degree
of protection afforded by design diversity is not quantifiable, employing diversity will only be
counted as additional protection beyond the prescribed levels of assurance but will not substitute
for other requirements [3]:

The degree of dissimilarity and hence the degree of protection is not usually measur-
able. Probability of loss of system function will increase to the extent that the safety
monitoring associated with dissimilar software versions detects actual errors or expe-
riences transients that exceed comparator threshold limits. Multiple software versions
are usually used, therefore, as a means of providing additional protection after the
software verification process objectives for the software level have been satisfied.

2 Software Fault-injection

A significant amount of research has focused on methods to detect and eliminate errors earlier in
the software life-cyclee.g., prior to implementation. Even so, errors related to misunderstandings,
ambiguities, or faulty assumptions will find their way into specifications. This is inevitable.

Many people have spent careers trying to develop techniques that eliminate all program errors.
(Although laudable, the fact remains that not all errors need elimination: only those errors that
have nasty consequences.) Because certain errors can be tolerated, we wish to isolate those classes
of specification errors that if implemented in ann-version system, will cause the voter to make a
bad choice. For now, a “bad” choice will be the same as a “different” choice (i.e., the specification
error had not been programmed).2 By demonstrating that particular classes of specification errors
and ambiguities are unlikely to impact the voter’s decision, increased confidence is warranted for
employing redundant, diverse versions in parallel.

1We will ignore the possibility of faulty voters.
2Because we have built other utilities to detect different types of internal states and output events, “bad” could also

be defined as other failure classes (such as “unsafe”).
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Figure 1: One Specification and Three Independent Versions.

Let’s begin by considering the simplen-version system in Figure 2. This figure illustrates the
traditional architecture of ann-version system that is composed ofn independent versions and a
software voterV. i is the input value fed to each version in parallel.V determines which output
to release from then versions. We employ software fault injection to determine whether identical
programmer faults in two or more versions will cause identical version failures. If so, then we
know that the voter will also succumb to the identical programmer faults. And if the faults have
a common root cause such as a faulty specification, then we know which classes of specification
errors must not occur.

The process of performing software fault injection involves adding code to the code under
analysis; the added code is calledinstrumentation. The modified program is then compiled and
executed. The instrumentation is involved in either injecting anomalies or observing the impact of
the anomalies.

There are many different types of specification-based anomalies that could be simulated using
fault injection. The key classes of specification-based anomalies that should be simulated via fault
injection methods are:

1. Those anomalies that can arise from actualspecification errors, where if each programmer
implements the specification correctly, then each version will perform some internal compu-
tation differently. (Whether this forces the versions to produce an incorrect output is another
question.)

2. Those anomalies that can arise fromspecification ambiguities, where at least one programmer
implements some directiveC in mannerCa, and the remaining development teams implement
it in a semantically different manner,Cb. (Again, whether this forces the versions to produce
an incorrect output is another question.)
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2.1 Analysis Assumptions and Requirements

This approach is abehavioral analysistechnique. The appropriate time to apply this technique
is after then-version system is built and ready for deployment. This approach assumes that the
following are available:

1. Version outputs can be captured before they enter into the voter.

2. Source code to the versions is available.

3. A specificationSfrom which we can isolate specific directives,A, B, C, : : :

In addition, the approach does not require the following be true, but it is prudent that these
assumptions are also true.

1. The versions are reliable and have been well tested. This assumption is only included to
justify our simulating classes of anomalies that are not representative ofprogrammer faults.
Also, if the versions are still suffering from reliability problems, then the versions are not yet
ready for this analysis.

2. The voter is reliable. (We do not care which voting approach is implemented, as long as it is
implemented correctly.)

2.2 Simulating a Faulty Specification forn-version Systems

Intuition suggests that wrongn-version specifications will always cause avoter failure. But when
the voter does not change its vote after common specification errors are injected into the versions,



we must wonder why. Once we find those directives that if modified cause the voter to switch its
vote, the question we want answered is “are we sure those directives are correct’?”

Specification errorsare simply faulty specification directives that define internal computations.
Simulating specification errors provides a prediction of how tolerant the voter will be to real
specification errors concerning then-versions.3

As an example, suppose that the specification has a directive to the programmers that says
that the ALTITUDE variable is a function off1 + f2. Suppose this function is wrong, and that it
should bef1 - f2. Unless this if found before the code is programmed, this specification error will
likely find its way into the versions. After all, the specification is usually the final authority on
correctness.

Here, fault injection will be used to force a corrupt ALTITUDE value in each version on each
test case. This is done in a manner reflective of acommon specification error. This involves
finding the appropriate source-code statements in the versions where the ALTITUDE computation
directive is implemented, and then injecting the common anomaly into each implementation.

In fault injection,perturbation functionsare the source code instrumentation utilities that inject
data state mutants[8]. Data state mutants are corruptions to the values that particular variables have
internally as the software executes. Developing new perturbation functions that simulate common
specification errors in multiple versions was a key research task of this project.

For this example, a perturbation function will force the value of ALTITUDE to be reduced or
increased by an equal amount,��, in all versions. If� were�30, then 30 would be subtracted
from the value that each version computed for ALTITUDE =f1 + f2. It may well be that different
versions have different values after executing the statements for this directive, and if so, we wish
to retain that natural diversity. So for� = �30, if one version had ALTITUDE equal to 40, then
after fault injection, the value will be 10. If another version had ALTITUDE equal to 500, then it
will get a value of 470.

After much thought, we decided that it is important to retain existing diversity in versions. We
could have taken a different approach and selected a unique valueQ (that no version had) and then
given each version an ALTITUDE value ofQ, But instead, we would do the following: ALTITUDE
= f1 + f2 ��.

The algorithm that we will employ for a single specification error to a numerical data type
follows:
Algorithm for Simulating a Specification Error:

1. For some test casei, run then-version system and store the output from each of then versions
in an arrayA of sizen. Let O denoteV’s decision based on then version outputs inA.

2. Select a computation directiveC from the specificationSthat is expected to be implemented
in each version. (We will assume thatC is implemented in each version, as we expect that
each version is already highly reliable in isolation.)

3. For i, apply the standard perturbation function defined in [8] (� 50% of current value as
range for selecting new value)) to the result computed from the implementation ofC in one

3One class that we cannot simulate easily here is incomplete specification errors, and thus in this paper, we will not
address this class.



randomly selected versione from then-version set.

4. Ine, calculate the offset (��) between what the original result fromC was and what the new
value fromC is after the internal value is perturbed. Note that� is a function ofi, e, and the
perturbation function.

5. For the othern� 1 versions, the offset of�� is forced into the internal result computed by
their implementation ofC.

6. Execute alln versions oni using the��-based perturbation function, and collect the output
from the voter,O’, for this i.

7. If O 6= O’, then the voter was not tolerant to the specification error affectingC. Also, if there
existsx versions (x� 2) whose outputs equalK after fault injection but whose outputs inA
did not equalK, then a single-input common-mode failure of severityx has occurred.

8. Perform the previous steps for a set of test cases and for eachC keeping a count of the number
of failures.

The possibility exists that some implementation ofC is not executed wheni is selected. If this
occurs for all versions, then ignorei and select another input. Otherwise, perform the algorithm as
explained, and perform the offset injection (in Step 5 of the algorithm) in those versions whereC is
exercised. As the number of versions increases that do exerciseC for i, the likelihood thatO 6= O’
decreases for thisi. And if some versions are executing different calculations than their counterparts,
then it is certainly possible that the voter will not produce the desired results for reasons other than
identical programmer faults. (An example here would be specification ambiguities, which we will
discuss in the next section.)

This algorithm simulates the situation of a precise “off-by-something” error (��) in directive
C affecting the data states in each version at the appropriate place. By using an offset, and not
just forcing a constant value into each version, we do not disturb other “natural” diversity that
may already exist in the different versions. For a fixedC, this algorithm will be applied for many
different i’s and different�’s. This suggests how sensitive voterV is toC in S.

Note that “off-by-something” errors are not the only specification errors that can be simulated.
For example, we could have an “off-by-some-percentage” that simulates a multiplier effect. So
instead of (��), we might want�K, whereK is a constant in (0,1].

2.3 Simulating an Ambiguous Specification forn-version Systems

In order to simulate anambiguous specificationdirective, a directive that can be interpreted in
several ways, we only need to make a small change to the previous algorithm.

Algorithm for Simulating a Specification Ambiguity:

1. For some test casei, run then-version system and store the output from each of then versions
in an arrayA of sizen. Let O denoteV’s decision based on then version outputs inA.



2. Select a directiveC from the specificationS that is expected to be implemented in each
version.

3. For i, apply the default perturbation function defined in [8] to the result computed from the
implementation ofC in onerandomly selected versione from then-version set.

4. Ine, calculate the offset (��) between what the original result fromC was and what the new
value fromC is after the internal value is perturbed. Note that� is a function ofi, e, and the
perturbation function.

5. For some random numberr (wherer is in [0..n � 2]), randomly selectr versions, none of
which can bee.

6. Take this set ofr versions, find in each version whereC is implemented, and force an offset
equivalent to�� into the internal result from those implementations ofC.

7. Execute alln versions of the system (whether they had�� applied to their program states
or not), and collect the output from the voter,O’, for this i.

8. If O 6= O’, then the voter was not tolerant to the specification ambiguity affectingC in the
r + 1 versions. Also, if there existsx versions (x � 2) whose outputs equalK after fault
injection but whose outputs inA did not equalK, then a single-input common-mode failure
of severityx has occurred.

9. Perform the previous steps for a set of test cases and for eachC keeping a count of the number
of failures.

This algorithm assumes that a computational directiveC could be interpreted in one oftwo ways.
This algorithm could be extended for 3 or more different interpretations ofC. This algorithm
randomly selects which versions will be assigned the first interpretation and leaves the other
versions alone.

3 Experiment

Our experimentation involved using five different versions of a controller for managing the traffic
lights and turn arrows at a particular intersection. Admittedly, this result is for a toy example; we
have tried to attain a real safety-criticaln-version system that is written in C or C++ but had no
success.

The original specification for this system was written by Adam Porter at the University of
Maryland, and was modified and given to students at the College of William and Mary. The reason
that modifications were made was so that manual correlation between specification directives and
source code computations could be easily made. (Note that these versions were not intended to be
part of a truen-version system, however team independence was mandated.)

In this specification, traffic can move going northbound (N), southbound (S), east bound (east
to north (E), east to south (ES)), and north to west (NW). There is a traffic light controlling all
northbound, south bound, and east bound lanes. There are also two turn arrows, one for the north
to west turn lane and for the east to south lane. Figure 3 depicts the intersection.
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Figure 3: Intersection.

There are 4 sensors under the roadway: one for all eastbound lanes (E), one for all southbound
(S) lanes, one for the northbound (N) lanes, and one for the north to west (NW) turning lane. A
sensor emits an input signal only if at least one car is in the corresponding lane. The rate at which
sensors emit signals is arbitrary. Each software version receives the sensor signals as input and
then generates the appropriate traffic light controls (outputs) for all lanes at the intersection. The
outputs indicate the color (GREEN, YELLOW, or RED) of every traffic light to reflect the current
traffic flow.

This experiment employed the algorithm for simulating a specification error. In the specification,
there were 11 key calculations that the programmers were instructed to handle inside the traffic
light software:

1. North Green Give traffic headed North the green light.

2. North Yellow Give traffic headed North the yellow light.

3. North Red Give traffic headed North the red light.

4. East Green Give traffic headed East the green light.

5. East Yellow Give traffic headed East the yellow light.

6. East Red Give traffic headed East the red light.

7. South Green Give traffic headed South the green light.

8. South Yellow Give traffic headed South the yellow light.

9. South Red Give traffic headed South the red light.

10. Northwest Arrow Give traffic heading North the turn arrow to go West.



11. Southeast Arrow Give traffic heading East the turn arrow to go South.

In our experiment, we executed twenty test suites on the five version system. Each test suite is
a chain of events at the intersection, where an event is either a single sensor emitting or multiple
sensors emitting simultaneously. Since there were 11Cs for which specification errors could be
simulated and a total of 510 inputs from all of the test suites, then-version system was executed
for a total of 5610 test cases. For each of the 5610 test cases, we collected the results generated
from the five versions without any perturbations to verify that there was a majority ruling on the
output of the system.

If there was not a majority when the voter compared the outputs from each of the versions, then
the test case was never executed with perturbed specification directives. The test case was omitted
simply because the versions were not able to agree on the output under “normal” circumstances.
In most existingn-version systems, the individual versions are thoroughly tested before integration
into then-version system, and thus the likelihood of undetected programmer faults is slim. The
versions used in this experiment were not tested as thoroughly as in real safety-criticaln-version
systems, however, there was a majority agreement from the five versions for 69% of the test cases.

If there was a majority output from the versions, then we executed the five version system for
every specification directive that was selected to be perturbed. Of these test cases, 23% resulted in
the voter making a different decision. The results from the analysis of applying the algorithm for
simulating a specification error are summarized in Figure 4: the indices along the x-axis are the
eleven specification directives and the y-axis corresponds to the number of single-input common-
mode failures that occurred. Note that the specification directive that caused the voter the most
problems was the directive handling the red light for Eastbound traffic; it caused the voter to fail
164 times.

The reason for this appears to be complexity in the specification. There were test scenarios
where events at traffic sensors occurred simultaneously. For instance, two cars might request a
Northwest turn and a Southeast turn from the controller at the same instant. These more complicated
input events confused several of the programming teams, and it appears to have made the East Red
directive extremely sensitive to errors. Also, the test cases that were employed exercised the East
Red directive more frequently. Hence if you have access to an operational profile, that information
should be used for even more accurate predictions concerning directive sensitivities.

Had this been a real system and had simultaneous events like this occurred frequently during
daily operations, then this analysis would have isolated the specification directives that were more
capable of making the traffic intersection unsafe. This suggests which specification directives need
greater attention during validation.

4 Summary

This paper has looked at a method for predicting how likely it is that ann-version software system
will trip up the voter when the specification is defective. By knowing the sensitivity of voters to
different specification anomalies, we can isolate those parts of the specification must be “solidly”
correct. If those portions of the specification that need to be correct are not, our approach predicts
that common-mode failures are more likely to occur.

We have focused on systems that employ design diversity. There is no reason that fault injection
cannot be used to simulate specification anomalies for single-version systems.
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Figure 4: Specification directives and single input common-mode failures

It is known that earlier elimination of errors in the life-cycle is cost-prudent. Little research has
ever been done to our knowledge that targeted eliminating only those specification problems that
will have a detrimental impact on the system. The approach we have outlined here is a first step in
that direction.

We admit that it would be preferable to have the results of this analysis much earlier in the
life-cycle. But at this point, we do not know how to achieve that.
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